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Separation in a slow linear shear flow 
past a cylinder and a plane 
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In  a slow linear shear flow over a cylinder in contact with a plane, there is an infinite 
set of eddies within the cusps a t  the point of contact. If the cylinder is not in contact 
with the plane, there is a flux of fluid between the cylinder and the plane, no matter 
how small the gap. When the gap is approximately 0.685 times the cylinder radius or 
less, the flow separates from the boundaries. Single eddies form alternately on the plane 
and the cylinder. These interlace as the cylinder approaches the plane and force the 
fluid which flows through the gap to take a tortuous path. The expressions for the 
force and torque acting on the cylinder are also given. 

1. Introduction 
One of the most interesting phenomena in two-dimensional Stokes flows is the 

existence of eddies within a corner formed by two intersecting planes, provided that 
the angle of the corner is sufficiently small. This problem was first studied by Dean & 
Montagnon (1  949), who, by considering solutions of the plane biharmonic equation 
in polar co-ordinates, showed that the power of the radial co-ordinate in the solution 
is complex if the angle between the intersecting planes is less than about 146.3". This 
result was later interpreted by Moffatt (1964) as indicating the existence of an infinite 
sequence of line vortices, whose strength diminishes exponentially as the corner is 
approached. Schubert (1967) showed that eddies exist in the cusps when there is a linear 
shear flow over a circular cylinder in contact with a plane, and Wakiya (1975) has 
shown that for a similar flow over a cylindrical projection on a plane, theMoffat eddies 
exist within the asymptotic structure of the flow near the line of intersection between 
the projection and the plane provided that the angle of intersection is less than 146.3". 

Schubert's work, although providing proof of the existence of eddies within the 
cusps, did not give details of the structure and extent of the eddy region, which is of 
course finite when a cylinder in contact with a plane is in a linear shear flow. In this 
paper, we present a complete solution to this problem and determine both the extent 
of the eddy region and the shape of the streamlines. We also consider the corresponding 
problem when the cylinder is not in contact with the plane. If the cylinder is a great 
distance from the plane, the shear flow is approximately uniform in the neighbourhood 
of the cylinder. Consequently the streamlines of the flow about the cylinder have 
fore-aft symmetry locally and there is no separation of the flow from the cylinder apart 
from along the streamlines which lie along the diameter of the cylinder parallel to 
the plane. This however poses the questions as to how the eddies, which are known to 
exist in the flow when the cylinder is in contact with the plane, can be formed as the 
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cylinder is brought closer to the plane, or indeed whether the eddies exist in the flow 
only when the cylinder is in contact with the plane. 

In  this paper we show that there is always a flux of fluid through the gap between the 
cylinder and plane, whatever the gap size. There is therefore a streamline attached to 
the cylinder which divides the fluid which passes through the gap from that which 
flows over and past the cylinder. Apart from along this streamline, there is no separa- 
tion of the flow from either the cylinder or the plane if the distanced from the centre to 
the plane is greater than approximately 1*685a, where a is the radius of the cylinder. 
At this critical distance, the flow starts to separate on the plane at points 2 . 2 9 6 ~  from 
the closest point of the plane to the cylinder. An eddy then forms adjacent to the plane 
and separation from the cylinder begins when its centre is about 1 . 0 3 0 ~  from the plane. 
As d/a is further decreased, the primary eddies grow and secondary, tertiary, etc. 
eddies are formed in separated flow regions on the cylinder and plane alternately. In  
the neighbourhood of where the gap is narrowest, the flow is approximately a plane 
Poiseuille flow, so that fluid which flows through the gap must ‘snake ’ its way between 
the vortices. In  this way, the infinite set of eddies which exists when the cylinder is in 
contact with the plane is produced in a systematic manner. We conclude our analysis 
with the calculation of the force and torque acting on the cylinder. 

2. Statement of the problem 
The motion sufficiently near a plane boundary of a viscous incompressible fluid, of 

constant density p and viscosity p, can be conveniently approximated by a uniform 
linear shear flow. We consider how this flow is affected by the presence of a rigid 
circular cylinder of radius a with its axis parallel to and at a distance d 2 a from the 
plane. Choosing the origin of Cartesian co-ordinates in the plane boundary with the 
x axis in the direction of the shear flow and the y axis normal to the plane of the shear 
and intersecting the axis of the cylinder, the undisturbed shear flow has Cartesian 
velocity components (Uy, 0, 0 ) ,  where U is the constant rate of shear. Since the fluid 
is incompressible, the equation of continuity is 

divv = 0, (2.1) 

where v is the fluid velocity. A stream function + can be defined such that the eom- 
ponents of v are given by 

The boundary conditions are that 

v = (u a+/ay, - u a+px, 0). (2.2) 

= a+py = o (2.3) 

+ = M ,  a+/an = 0, (2.4) 

on the plane, while on the cylinder, 

with a/an denoting the derivative along the outward normal to the cylinder. The 
constant U M  can be identified as the flux of fluid through the gap between the cylinder 
and the plane. When the cylinder is in contact with the plane, M = 0. Otherwise it is an 
unknown of the problem. The boundary condition a t  infinity is 

+ #?12 (Y-..O). (2.6) 
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n A" Pn 

1 4-21239+ 2.25073i 7.49768 + 2.76858i 
2 10.7125 +3*10319i 13.9000 + 3.35221i 
3 17-0734 + 3.5510% 20.2385 +3*71677i 

TABLE 1 

We assume that in the fluid motion the inertia terms in the Navier-Stokes equations 
can be neglected. The equations of motion are accordingly 

vp = p v ,  (2.6) 

where p denotes the hydrodynamic fluid pressure. On elimbating p from (2.6), we 
obtain the plane biharmonic equation for $: 

V4$ = 0. (2.7) 

Although the assumption of Stokes flow is eventually violated as y+m, this is 
unimportant since the region of interest lies in the vicinity of the cylinder, which is 
assumed to be near to the plane. In  this region, the appropriate Reynolds number for 
the flow is Ua2p/,u and this must be small for (2.6) to hold. We note however that the 
undisturbed shear flow is a solution of both the Stokes equations and the full Navier- 
Stokes equations. 

3. Cylinder in contact with the plane 
In  subsequent work we shall assume that all variables have been non- 

dimensionalized using U ,  p, ,u and the diameter 2a of the cylinder as reference scales. 
Defining inverse co-ordinates (u, v) by means of the relations 

z = v/(u2 + v2), y = UI(U2 + v2), (3.1) 

the fluid region is given by 0 < u < 1,  - co < v < co. The cylinder is u = 1 and the 
plane is u = 0. On writing 

$ = BY2-X 

it  is seen that x must satisfy (2.7), together with the boundary conditions 

x = axtau = o (u = o), 
x = 4y2, axtau = y aypu (u = I) ,  

x = o(y2) (u2+v2-+0). 

The solution for x, which is equivalent to that given by Schubert (1967), is 

[s(sinh su - su cosh su )  + (e+ sinhs - s + s2) u sinh su;] 
cos sv ds. (3.2) 

The integrand of (3.2) is regular at  s = 0 and has simple poles in the fourth quadrant 
at  { - ih,, - ip,; n 2 11, where (A,) and &,) are respectively the zeros of sinz k z = 0 
in the first quadrant, arranged in order of increasing real part. The first few values, 
tabulated by Buchwald (1964), are listed in table 1. 

/om sinh2 s - s2 
x = &(u2+v2)-1 
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m 2, 2 Y 
1 1.0010 0.7712 0-3634 
2 2-4568 0.3908 0.0796 
3 3.8526 0.2553 0.0331 

TABLE 2 

The theory of residues then shows that for v > 0 

- u) sin A,u + u sin A,( 1 - u) @ = - &r(u2 + v2)-1Re exp (- A n 9  
n= 1 1 + cos A, 

(1 - u)  sinp,u - u sinp,( 1 - u) - 
1 - oosp, 

We note that the A, and p, terms are respectively even and odd functions of u - 4 and 
that they are oscillatory functions of v with exponentially small amplitudes when 
v > 1, with a decay factor - e--2nv in each series. In  particular, when u = 4, 

-in singh, n sin344 
exp(-Alv) = --Re- A; @(b v, - a+v2 Re 1 + cos A, exp ( - A,v), 

& + V 2  

with relative error of order e-znu. The right-hand side vanishes a t  infinitely many 
values of v given by 

v Im A, = (m - 4) n + 3 arg (sin &I1) - 2 arg A,. (3.4) 

Similar equations hold for u 4 but with relative error of order e-nv. Since $ vanishes 
on u = 0 and u = 1, the existence of infinitely many curves @ = 0 in the fluid linking 
the cylinder and plane is established. These streamlines form the dividing streamlines 
of an infinite sequence of eddies in the neighbourhood of the point of contact between 
the cylinder and plane, where v = 00. In  table 2 we have listed the first three of the 
solutions of (3.4) together with the corresponding values of x and y which are deter- 
mined from (3.1). 

The points a t  which the curves $ = 0 separate from the cylinder and plane are given 
by the zeros of a2$/au2 = 0 at u = 1 and u = 0 respectively. Retaining only the leading 
terms in the series of (3.3), we have 

n 
2 ( 0 ,  v) - -Re (A, exp (- A,v) +pl  exp (-y,v)}. 
aU2 V2 

Hence the values of v for separation are given asymptotically by 

Re(A,exp(-A,v)PT OLllhl)exP(-(Pl-hl)v)l} = 0. (3.5) 

The minus and plus signs apply respectively to the cylinder and the plane. The ,ul 
terms are important at the first separation points, barely significant at the second and 
negligible thereafter. In  table 3, the solutions to (3.5) for the four smallest values of v 
are displayed together with the values of x and y a t  the separation points. 

\ 
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Cylinder (u = 1) Plane (u = 0) 
A 

f -, 7 
2, X Y 2, X 

0.937 0.499 0.532 0.895 1.117 
2.312 0-364 0.158 2.31 1 0.433 
3.708 0.251 0.068 3.708 0.270 
5.104 0.189 0.037 5.104 0.196 

TABLE 3 

The angles a t  which the separation streamlines detach from the boundaries can be 
found on evaluating the third derivatives of +. From (3.3) we have 

a3V9 ?T 

a3@ ?l 

au2 - av (1, V) - G 2 R e  {- A2,exp ( - A,v) +p;exp( -p,w)}, 

- (0, v) - -Re { - h2, exp ( - A,v) -p;exp ( -p,v)}, 
au2 av V2 

whilst, when v satisfies (3.5), 

7r 
3 ( l , v )  - - Re { - A, exp ( - A,v) cos A, - p1 exp ( -pl v) cos p,}, 
au3 1 +v2 

3 (0, v )  - -Re {A, exp ( - A,v) cos A, -pl exp ( - p l v )  oosp,}. 
au3 V2 

n 

The angles of separation are given by 

tan-, [ 3- a~$v/~:],,, - u)>  tan-' 

where v satisfies (3.5), and are readily shown to be 

1 T (PlPl) exp [ - 0%- A,) vl 
tan-, (3 Im [A, - + (P1- 4) (Pllhl) exp[ - (111 - 

(COB A, + cos P1) (PlPl) exp - (P1- A,) @I 
1 T (Pl/Al) exp - (P1- 4) VI 

with the upper and lower signs applying on the cylinder and plane respectively 
limiting value of this angle as w + co is 

tan-l( 31m(A1) } = 58.61", 
Im (cos A,) 

(3.6) 

The 

while the angles subtended by the first separation line are 61.5' and 55.8" at  the cylinder 
and plane respectively. In  figure 1, we have sketeched the shapes of the streamlines 
which divide the two largest eddies. It will be observed that the outermost dividing 
streamline separates from the plane at a point just over twice the radius from the 
point of contact. This streamline separates from the cylinder a t  a point slightly above 
the extremity of the diameter parallel to the plane. The outermost dividing streamline 
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X 

FIGURE 1. The separation streamlines when the cylinder touches the plane. 

is convex outwards while all of the other dividing streamlines are concave outwards. 
The streamline pattern is symmetrical about the plane x = 0. The dashed curves 
indicate the general direction of the flow within and outside the eddy region. 

4. Cylinder not in contact with the plane 

co-ordinates (6,  a)  which are related to the Cartesian co-ordinates by 
For this case, the solution for 7,b is most conveniently found in terms of bipolar 

c sin 7 c sinh 6 
X =  

coshE-cosq’ = coshE-cosq 

with c = 4 sinh a. The plane is given by t; = 0 while the cylinder is given by 6 = a. The 
distance from the centre of the cylinder to the plane is 4cosha. The flow region is 
given by 0 -= 6 < a, 171 Q 7 ~ .  

When the cylinder is not in contact with the plane, the value of the stream function 
on the cylinder is a constant M which depends on the distance of the cylinder from the 
plane. We therefore write the stream function as 

7,b=4yZ-x+M$, (4.2) 

(4.3) 

where x and $ satisfy (2.7) and the boundary conditions 

x = axlag = $ = a$lag = o (6 = 01, 

x,$ = o(y2) as t2+q2+0.  (4.5) 
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We must look for solutions x and @ such that + is an even periodic function of 7 with 
period 2m, and noting that y@ and (x2 + y2) @ are biharmonic functions if @ is harmonic, 
it follows that suitable biharmonic functions which satisfy the boundary conditions 

(4.3) are given by m x = 3 8  (cosh 6- cos q)-l x,(fJ cos nq (4.6) 
n=O 

and 

where 
4J = (coah E - [$rJ(E) + M E )  cos 71, 

~ ~ ( 6 )  = AoE sinh + B,([ cosh E - sinh 0, 
~ ~ ( 5 )  = Al(cosh 26- 1) + B,(sinh 26 - 2E), 

~ ~ ( 6 )  = A,[cosh (n + 1) 6 - cosh (n - 1) El + Bn[(n - 1)sinh (n + 1) 

#,(f) = ao6sinh~+b,(<cosh~-sinh~),  

+1(<) = al(cosh2g- 1)+bl(sinh2<-2g), 

-(n+l)sinh(n-l)E] (n 2 2)’ 

the coefficients a,, b,, . . . , A, and B, (n 2 2) being independent of 6 and 7. The boundary 
conditions (4.4) imply that 

+,(a) = cosha, #,(a) = - 1, &(a) = sinha, #;(a) = 0, 

xo(a) = sinh a, X,(a) = e+-l)a - e-(.n+1)OL (n 2 11, 

x;(a) = cosha, xA(a) = (n + 1) e-(n+l)LX - (n - 1) e-(%-’)“ (n 2 1). 

It readily follows that 

sinh2 a a + sinh a cosh a 
a2 - sinh2 a’ a2 - sinh2 a ’ a, = - b, = 

a 4 tanh a 
a -  b -  ’ - - a - t anha ’  ‘ - a-tanha’ 

a e-2a - e-” sinh a + sinh2 a 
sinh 2a(a - tanh a) 

-&tanha 
’ B1 = a- tanha’  

A, = 

n(n - coth a) sinh2a + e-na sinh nu 
sinh2 na - n2 sinh2 a 

- n sinh2 a 
sinh2na-n2sinhaa (n B 2). A, = 9 B,= 

The condition (4.5) is satisfied since x and r$ are - t2/(%+q2) - y2/(x2+ y2) as 

The constant M is determined from the condition that the pressurep is single valued 
throughout the fluid. The Stokes equations (2.6) imply that p and pV2$ are conjbgate 
functions. Thus for p to be single valued, we must have 

2 2  + y2-f 03. 
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where C is any closed curve drawn in the fluid. The simplest choice of C is the x axis 
and a semicircle at  infinity. Now as r = (x2 + y2)* + 03, 

$ = Q Y 2 P  + O ( l ) l *  

Hence a(V2$)/an = o(r-1), 

so the contribution to the integral from the semicircle at infinity is zero, and since $ is 
an even function of x, it follows that 

Irn [ i ( V 2 $ ) ]  dx = 0. 
0 y=o 

(4.10) 

The conformal transformation (4.1) and the decomposition (4.2) means that (4.10) is 
equivalent to 

On substituting for + and x from (4.6) and (4.7), we obtain 

[2Xt(O) - X ? ( O ) ]  (B, - 2 4 )  c2 
[2+;(0)-$;(0)] = (b0-2b1) * 

M = c2 

On substituting for c and the coefficients, we obtain after simplification 

M = (2a2 + asinh 2a - 4 sinh2a)/16a. (4.11) 

Evidently M > 0 for all positive values of a, and when a < 1 

a5 
M + o(a7). (4.12) 

Thus if E ( = d - a) is the minimum clearance between the cylinder and the plane, 
E = $(cash a - 1)  N aa2 and consequently 

M - * & + O ( E ~ )  45 (4.13) 

for small gap widths. 
The streamline II. = M consists of the cylinder and a curve in the fluid with asymp- 

tote y = (2M)). This curve is the dividing streamline which separates the fluid which 
flows through the gap from that which flowsover and past the cylinder. Equation (4.12) 
or (4.13) shows that no matter how small the gap, there is always a flux of fluid, albeit 
very small, through the gap between the cylinder and plane. In  the case when a 1, 
we see from (4.1 1) that M N &e2a N $d2. 

For separation to occur on the cylinder it is necessary for a2$/aE2 to vanish. The 
condition for this to happen is found to be 

2 ( cosh2 a + sinh2 a)  
cash a - cos y 

5 sinh2 a cosh a 
(cosh a - cos y)2 

2 sinh4 a 
(cosh a - cos y)S + - 

16M asinha tanhacosq - C xi(a)cosny = 0. (4.14) +-[ sinh2a a2-sinh2a+ a- tanha  1 +=o 
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The corresponding condition for separation from the plane is 

tanhacos7 O3 

a- tanhu n = ~  
- x~(0)cosnq = 0. (4.16) 1 2 

When a 1, (4.15) gives asymptotically cos2 7 = 7, showing that separation does 
not occur from the plane when a is sufficiently large. Equation (4.14) gives asymp- 
totically 

4a-1 cos 7 = 0, (4.16) 

which has zeros a t  q = in, i.e. a t  the extremities of the diameter of the cylinder which 
is parallel to the plane. Now when a is large, the distance from the cylinder to the plane 
is large, so that the strength of the shear flow in the neighbourhood of the cylinder is 
approximately uniform. The solutions of (4.16) just give the usual fore-and-aft 
stagnation points at  which the flow separates as it passes either side of the cylinder. 

When a % 1, the asymptotic form for q5 is 

Thus 
(4.17) 

when 7 is not small. The points on the cylinder which are closest to the plane have 
7 N n and therefore y N tafl. Also the minimum clearance E N iaz. Thus (4.17) is 
equivalent to 

so that when a < 1 and 7 N n, 4 approximates to the stream function of a plane 
Poiseuille flow through the gap with unit flux. The total contribution to @ from q5 is 
Nq5, which is O(a6) when a < 1, i.e. algebraically small. 

The form of the series solution (4.6) for x is unsuitable for examining the behaviour 
of x when a < 1 since all terms are then significant. To obtain a more suitable form, 
we define the complex function F(z)  of the complex variable z = 2 + iy  as 

A ( z )  sinh zfl sinh 6 + B(z) [ z  cosh zfl sinh - sinh zfl cosh 51 F(z )  = cos (n - 7) Z ,  (4.18) 
sin nz(sinh2 z a  - z2 sinh2 a) 

with A ( z )  = z(z - coth a) sinhza + e l a r  sinh za, B(z) = - z sinh2 a. (4.19) 

It then follows that the residues of F ( z )  at the zeros of sinnz are n-lxo(fl) at z = 0 and 
(2n)-1xn(fl) cosnq at z = n for n 2 1.  On integrating F(z )  around a contour consisting 
of the imaginary axis indented a t  the origin together with the infinite semicircle in 
the half-plane Re z > 0, the integral over the semicircle vanishes and 

m sinh2 fl  
F( iy )  dy = - 2 1 sinhny 'sinssinh fl  cosh (n - q) dy = - cash f l  - cos q' 
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[sinh ( sin cn( 1 - ( /a)  + sin (crJ/a) sinh(a - 5)] Gosh [7,(n- r)/a] 
a cos a, + sinh a + sinh (7,n/a) 

[sinh (sin 7,( 1 - ( /a)  - sin (7,(/a) sinh (a - 5)3 
a cos 7, - sinh a 

X 

X (4.20) 

where asino,+a,sinha = 0, asin7,-~,sinha = 0, (4.21) 

the ordering of a, and 7, being such that the real part increasea with n. We note that 
the a, and 7, terms in (4.20) are respectively even and odd functions of 6 - +a. The 
series representation for Sy2 - x given by (4.20) is most suitable for determining the 
asymptotic structure of the flow as a -+ 0 since the terms in each of the series decrease 
exponentially in absolute magnitude as a -+ 0 and in this limit a, -+ An and 7, +p,' 
with A, and ,un as defined in $3. 

[ 
On differentictting (4.20) twice with respect to 6 ,  we obtain 

a2 - in sinh2 a (cosh [a,(n - q)/a] cr,(cosh a i- cos a,) 
[=a - (cosha - cos 7) Resl { sinh (a,n/a) a(a cos u, + sinha) 

coah [7,(n - q)/a] ~,(cosh a - cos 7,) 

+ sinh(~,n/a) a(acos 7, - sinh a) 
a2 &r sinh2 a cosh [a,(n - q)/a] a, (cosh a + cos a,) 

[@(b'-x)]E-,, = (1 - ~ o s q ) ~ ~ , ? ~  [ sinh (cr,n/a) a(a cos a, + sinh a} 

cosh [rn(n - q)/a] ~,(cosh a - cos 7,) 

a(a COB 7, - sinh a) 
- 

sinh (7,n/a) 

Expression (4.20) shows that #y2 - x is O(lexp( - a, y / a ) J )  when q > a. When a < 1, 

a5 (4.24) 
52+4sin2iq' ' ~ 2 + + s i n 2 ~ q '  

so that for x and y not to be small, 7 must be O(a). Thus in the region q > a, when 
a 1, it is the term Mq5 in the stream function which dominates and this, we have 
seen, describes approximately a plane Poiseuille flow through the gap. 

On writing 5 = au and q = av in (4.24) and letting a+ 0, we obtain (3.1) with 
0 < u 6 1, v 2 0. Now $ is bounded and M -+O as a+O, so it is only 4 y 2 - x  which 
survives in this limit. The expression (3.2) can be recovered from the expression (4.6) 
for x by writing nu = s and letting a+O, whereupon the summation becomes an 

equations (4.1) give a sin q 
X N  

integral. Thus 

l W  as 
2n=o a 
- C x,(f)  cos nq + 

OD [(e-"sinh s + s2 - s) u sinh su + s(sinh su - su cosh su)] 
sinha s - 82 

cos 82, as 
= b 
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and the solution when the cylinder is in contact with the plane is recovered. Since 
un+An and 7,-+pn as a + O ,  (3.3) is, as expected, the limit of (4.20). 

The possibility of separation from the boundaries occurring in the region where 
M$ is the dominant part of $ can be quickly excluded by observing that the vanishing 
of P$/@ on either 5 = 0 or 5 = a implies that 

cosy = 1 -O(a2), 
and therefore y = O(a). 

From (4.22) and (4.23), we see that if a < 1 and y = O(a), 

6 
?? a2 1 t=o,a aa 

(cash E - 00s 7) - $ N +-(l-cosav), and from (4.7), 

where y = av. On inserting the factor M given by (4.12), it is clear that when 

(1  5n)-l a3( 1 - cos av)  < Ih, exp ( - A, v) I, 
the flow separates from the cylinder and the plane and the separation points will be 
approximately those determined in 0 3. The outermost separation point on the cylinder 
is that from which emanates the streamline which divides the fluid passing over the 
cylinder from that flowing through the gap between the cylinder and the plane. This 
streamline is asymptotic to y = (2M)t as 1x1 +a. As a is decreased, the additional 
separation points appear in pairs sinoe a separation streamline must begin and end 
on the same boundary. 

To determine the location of the points of separation for general values of a and to 
establish a t  what distance the cylinder must be from the plane for separation to occur, 
it is necessary to determine the zeros of (4.14) and (4.15) and these have to be solved 
numerically. Because of the symmetry of the flow about the plane x = 0, we need con- 
sider only solutions with 0 < y < 7 ~ .  Separation first occurs at  the largest double zero 
of (4.14) or (4.15). The results of our numerical work show that separation first occurs 
from the plane when a = 1.1123, which corresponds to a value of d/a z 1.685. The 
point on the plane where separation starts has a dimensionless x co-ordinate of 1.148. 
It will be noticed that this differs little from 1.1 17, whiih is the value of x a t  the outer- 
most separation point on the plane when the cylinder is in contact with the plane. 
When dla is decreased below this critical value, a single eddy forms on the plane, the 
point of reattachment of its bounding streamline to the plane being such as to approach 
the point with co-ordinate 0.433, this being the second outermost separation point 
on the plane given in table 3. Separation from the cylinder begins when a = 0.2448, 
giving d/a w 1.030, and the point on the cylinder where separation first occurs has 
Cartesian co-ordinates x = 0.341, y = 0.149. A single eddy forms and grows from this 
point as a is decreased. A second eddy forms on the plane when a = 0.046. With 
further decrease in the value of a, the second eddy forms on the cylinder followed by 
a third eddy on the plane, and so on, with the eddies forming alternately on the plane 
and the cylinder. As the eddies grow, the dividing streamlines become closer together, 
but since the fluid which upstream lies between the planes y = 0 and y = (2M)i must 
pass through the gap between the cylinder and plane, it  is forced to ‘snake’ its way 
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X 

FIGURE 2. The dividing streamline and eddies when a = 0.15. 

between the interlacing eddies which form on either side of the plane 2 = 0. In  this 
way we can see how the infinite nest of eddies which exists in the flow when the cylinder 
actually touches the plane is formed in a systematic manner as the cylinder approaches 
contact with the plane. 

It is somewhat surprising that although separation from the plane occurs when the 
minimum gap between the cylinder and the plane is 0 . 6 8 5 ~  or less, separation from 
the cylinder does not start until the gap is reduced to 3 yo of the cylinder radius, and 
it is when this already small gap approaches zero that the infinite set of nested eddies 
is produced in the flow. In  figure 2, we have drawn the separation streamlines for 
a = 0-15, for which dla x 1.01. At this value of a, separation occurs on both the plane 
and the cylinder, but there is only one eddy on either boundary. Again the broken 
line indicates the general direction of the flow. 

5. Force and torque acting on the cylinder 
In a Stokes flow past a fixed cylinder of radius a with velocity components given 

by (2.2), it may be shown that the components of force acting on the cylinder are given 

X = 2 p U a f (  - y z V 2 S + % V z + ) d s ,  a 
an 

whilst the torque T about the axis of the cylinder is 

T = 2p Ua2 f V2+ ds,  
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where T and the arc length 2as are measured clockwise and the normal is drawn into 
the fluid. In  the cases considered in the previous sections, V2@ and a/an are even in x, 
so that Y = 0. 

Noting that y and V2$ are harmonic functions, the integral for X can be taken round 
any closed path in the fluid encircling the cylinder once. Further, since ay/an = ax/as, 
it follows that 

x = - 2 p U u ~ [ ( y ~ + x ~ ) V ~ @ ] d s .  (5.3) 

This formula shows immediately that the contribution from the term +y2 in @ to X is 
identically zero. 

An advantageous choice of contour for the remaining integral would appear to be 
the x axis and a large semicircle at  infinity but the order of magnitude specified for 
$ - #y2 at large distances does not immediately confirm that the contribution from the 
large semicircle to X tends to zero. We shall take an arbitrary circle in the relevant 
co-ordinate system and obtain an expression for X independent of the circle chosen. 

When the cylinder is not in contact with the plane, we have, from (4.1). (4.2)) (4.6) 
(4.7) and (5.3), 

where 

Equation (5.4) can be simplified to 

= (2n/c) [fIY(E, -f;(tr,l- cash 5 [fO"(E) --.f0(811. 

Further use of (5 .5 )  and substitution of (4.8) for x, and g50 yields 

x/2puu = (4n/c) (&C2A0- Ma,). 

Then since c = sinh a and M is given by (4.1 l) ,  we obtain 

X = 4npUu(sinha/a), 

which in terms of the gap width E = $(Gosh a - 1) may be written 
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The contribution of the 4y2 term to the clockwise moment T, given by (5.2), is 
clearly 2npUa2. Accordingly, T is given by 

2 
Gosh a - cos 7 

- 

00 2 2 
= - {f;(a) -fo(a)} + 2 cosh a 2 fn(a) edna 

c n=O 

a, 2 

c2 n=o 
--sinha 2 [fh(a)-nfn(a)]e-na. 

The formulae for xn(fl) (n 2 0),  $o(E)  and imply that 

$(a) - fo(a) = a sinh a = i c  

whiLt the remaining terms above yield 

00 

-4sinhza 2 ne-zna = - 1.  

Hence the contribution to the torque from the disturbance flow due to the presence of 
the cylinder is zero and 

which indicates that T is independent of a and therefore of the gap width 8. 

n= 1 

T = 2npUa2, (5.7) 

Similarly it may be shown that in the contact case of 0 3, 

X = 4npUa, T = 2npUa2, 

which results are consistent with (5.6) and (5.7) and agree with those of Schubert 
(1967). 

The work described in this paper was completed while one of us (M. E. O’NeilI) 
was visiting the Department of Mathematics, University of Calgary, and was supported 
by the National Research Council of Canada. 
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